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Abstract
Load balancing in the decomposition of sparse matri-

ces without disturbing the row/column ordering is inves-
tigated. Both asymptotically and run-time efficient algo-
rithms are proposed and implemented for one-dimensional
(1D) striping and two-dimensional (2D) jagged partition-
ing. Bisection method is successfully adopted to 1D parti-
tioning by deriving and exploiting tight bounds on the value
of an optimal solution. A bisection algorithm is proposed
for 2D jagged partitioning by introducing a new 2D prob-
ing scheme. A novel bidding algorithm is proposed for both
1D and 2D partitioning. Proposed algorithms are also space
efficient since they only need the conventional compressed
storage scheme for the given matrix, avoiding the need for a
dense workload matrix in 2D decomposition. Experimental
results on a large set of test matrices show that consider-
ably better decompositions can be obtained by using opti-
mal load balancing algorithms instead of heuristics. Pro-
posed algorithms are 100 times faster than a single sparse
matrix vector multiplication (SpMxV), in the -way 1D
decompositions, on the overall average. Our jagged parti-
tioning algorithms are only slower than a single Sp-
MxV computation in the -way 2D decompositions, on
the overall average.

1 Introduction
Sparse matrix vector multiplication (SpMxV) constitutes

the most time consuming operation in iterative solvers. Par-
allelization of SpMxV operation requires the decomposi-
tion and distribution of the coefficient matrix. Two ob-
jectives in the decomposition are the minimization of the
communication requirement and the load imbalance. Graph
theoretical approach is the most commonly used decom-
position technique in the literature. Graph–partitioning
based decomposition corresponds to one-dimensional de-
composition (i.e., either rowwise or columnwise) through
row/column permutations of the given matrix. We have
recently proposed hypergraph–partitioning based decom-
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position schemes with better models for the communica-
tion requirement [4]. Both graph and hypergraph parti-
tioning problems are NP-hard problems, and hence effi-
cient heuristics are used for finding good decompositions.
In graph/hypergraph approaches, both communication and
load imbalance metrics are explicitly handled for minimiza-
tion during the partitioning.
Graph/hypergraph partitioning based decomposition

may not be appropriate for some applications. First, re-
ordering the matrix may not be feasible for some reason,
e.g., the matrix might be already ordered for factorization.
Second, graph/hypergraph partitioning might be too expen-
sive as a preprocessing step for the sake of parallelization.
Finally, graph/hypergraphmodels may suffer from scalabil-
ity in the decomposition of small matrices for large number
of processors because of their one-dimensional decomposi-
tion restriction.
In this work, we investigate the decomposition of sparse

matrices without disturbing the given row/column order-
ing. In this approach, communication volumemetric is han-
dled implicitly by the selection of proper matrix partition-
ing and parallel SpMxV computation schemes at the be-
ginning. Here, partitioning scheme refers to the scheme to
be used for partitioning the given matrix to submatrices,
where denotes the number of processors. Communica-
tion cost is determined by the partitioning scheme and the
associated SpMxV algorithm. That is, the communication
cost is assumed to be independent of the matrix sparsity
pattern. Hence, load balance is the only metric explicitly
considered in the decomposition. Cyclic (scattered) parti-
tioning schemes automatically resolve the load balancing
problem. However, these schemes suffer from high com-
munication cost. Block partitioning schemes considerably
reduce the communication cost in two-dimensional decom-
position. Uniform block partitioning easily achieves perfect
load balance in dense matrices. However, load-balanced
block partitioning becomes an important issue in the de-
composition of irregularly sparse matrices.
We consider the load balancing problem in both one-

dimensional (1D) and two-dimensional (2D) block parti-
tioning schemes. 1D partitioning corresponds to rowwise
or columnwise block striping [15]. Fig. 1(a) illustrates 4-

1



Figure 1: (a) 4-way rowwise striping and (b) 4 4-way row-
wise jagged partitioning

way rowwise striping. 2D partitioning increases the scal-
ability of the decomposition while reducing the volume of
communication. Block-checkboard partitioning [15] leads
to an efficient SpMxV algorithm with low communication
requirement [10]. This partitioning scheme is also referred
to as rectilinear partitioning [19] and generalized block dis-
tribution (GBD) [17]. This scheme is very well suited to
dense matrices and matrices with uniform sparsity pattern.
However, it is hard to achieve good load balance on sparse
matrices with non-uniform sparsity pattern because of the
restriction of rectilinear splits on both rows and columns.
Jagged rectilinear partitioning is commonly used to alle-
viate this problem. In this scheme, rectilinear splits are
restricted to either rows or columns of the matrix thus in-
creasing the search space for load balancing. In rowwise
(columnwise) jagged partitioning, matrix is partitioned into
horizontal (vertical) strips, and every horizontal (vertical)

strip is independently partitioned into submatrices, where
. That is, splits span the entire matrix in one di-

mension, while they are jagged in the other dimension. This
scheme is also referred to as semi-generalized block distri-
bution (SBD) [17], basic partitioning configuration [5], and
multiple recursive decomposition (MRD) [21]. Fig. 1(b) il-
lustrates 4 4 rowwise jagged partitioning. Without loss of
generality, we restrict our discussions to rowwise striped
and jagged partitioning schemes. All results of this paper
can easily be extended to columnwise schemes.
Despite the recent theoretical results on optimal block

partitioning of workload arrays, heuristics are still com-
monly used in the sparse matrix community. This may be
due to the ease of implementation, efficiency, and expec-
tation of “good” quality decompositions. These heuristics
are based on recursive decomposition (RD) of 1D workload
arrays. For example, in rowwise striping, -way decompo-
sition is achieved through bisection levels, where is
a power of 2. At each bisection step in a level, the current
row stripe is divided evenly into two row stripes. Here, even
division corresponds to two row stripes with equal numbers
of nonzeros as much as possible. In jagged partitioning, this
even bisection strategy is adopted both in the -way row-
striping and in the -way columnwise striping of every row
stripe. Prime factorization of and , values is used to
avoid the power-of-two restriction on these integer values
for 1D and 2D decompositions, respectively [21].
Although optimal division can easily be achieved at ev-

ery bisection step, the sequence of bisections may lead

to poor load balancing. In Section 4, we demonstrate
that qualities of the decompositions obtained through RD
heuristic substantially deviate from those of the optimal
ones through experimental results. In Sections 3.1 and 3.2,
we propose efficient algorithms for optimal load-balancing
in 1D striped and 2D jagged partitioning of sparse matri-
ces. Experimental results presented in Section 4 demon-
strate the feasibility of using optimal load balancing algo-
rithms in sparse matrix domain. Proposed algorithms are
100 times faster than a single SpMxV computation, in the
-way 1D decompositions, on the overall average. Ini-

tial implementations of our jagged partitioning algorithms
are only slower than a single SpMxV computation in
the -way ( ) 2D decompositions, on the overall av-
erage. Proposed algorithms are also feasible in terms of
memory requirement since they only need the conventional
compressed storage scheme for the given matrix contrary to
the existing optimal partitioning algorithms which depend
on the existence of a dense workload matrix for 2D decom-
position.

2 Previous Work on Partitioning of Work-
load Arrays
1D partitioning of sparse matrices is equivalent to the

chains-on-chains partitioning problem with unweighted
edges. The objective of chains-on-chains partitioning prob-
lem is to divide a 1D task array of length into con-
secutive parts such that the load of the maximally loaded
part is minimized. In rowwise striping, is equal to the
number of nonzeros in row of the given sparse ma-
trix. The algorithm paradigms used for the solution of the
chains-on-chains problem can be classified as probe and
dynamic programming (DP) approaches. The probe ap-
proach relies on repeated investigations for the existence of
a partition with a bottleneck value no greater than a given
value. The probe approach goes back to Iqbal’s [11] and
Bokhari’s [2] works describing -approximate and optimal
algorithms running in and
times, respectively. Here, denotes the sum of the
weights in the workload array , i.e., .
Iqbal and Bokhari [12], and Nicol and O’Hallaron [18]
later proposed an algorithm, and finally
Nicol [19] proposed an algorithm.
Anily and Federgruen [1] initiated the DP approach with
an algorithm. Hansen and Lih [9] independently
proposed an algorithm. Choi and Narahari [6],
Manne and Sørevik [16], and Olstad and Manne [20] intro-
duced asymptotically faster ,
and algorithms, respectively.
Theoretical work on optimal 2D partitioning is rela-

tively rare. Nicol [19] conjectured the NP-completeness of
the block checkboard (2D rectilinear) partitioning problem
by considering the closely related NP-complete multi-stage
linear assignment problem [14]. The NP-completeness of



this problem (GBD) has later been proven by Grigni and
Manne [8]. Manne and Sørevik [17] extended the DP ap-
proach to optimal jagged partitioning of 2D workload ar-
rays. Their algorithm runs in -time
for jagged partitioning (SBD) of an workload array
to a processor array. In sparse matrix domain, the
workload array represents the sparsity pattern of the given
matrix , such that and if and

, respectively.

3 Proposed Load Balancing Algorithms
The objective of this paper is to formulate both asymp-

totically and run-time efficient optimal load-balancing algo-
rithms for 1D striped and 2D jagged partitioning schemes.
An optimal decomposition corresponds to a partitioning
which minimizes the number of nonzeros in the most heav-
ily loaded processor (bottleneck processor). The load of
the bottleneck processor is called the bottleneck value of
the partition. Efficiency in terms of memory requirement
is also considered in these formulations since maintain-
ing an workload array for an sparse matrix
is not acceptable. So, our algorithms use either the row
compressed storage (RCS) or column compressed storage
(CCS) schemes for the given sparse matrix. RCS is used for
rowwise striped and rowwise jagged partitioning schemes.
We have developed and experimented several optimal

load balancing algorithms. In this section, we present and
discuss only two algorithms for 1D striped and 2D jagged
partitioning schemes due to the lack of space. These algo-
rithms seem to be the most promising algorithms according
to the current implementations. We restrict our discussion
to probe-based approaches because of extremely high exe-
cution times of DP-based approaches on sparse test matri-
ces. This finding is experimentally verified in Section 4.
3.1 One-Dimensional Striped Partitioning
In this section, we consider optimal K-way row strip-

ing of an sparse matrix. Bisection method is a very
promising approach for sparse matrix decomposition for the
following two reasons. First, tight bounds can be set for
the bottleneck value of an optimal solution. The bottleneck
value of an optimal partition ranges between
and UB , where is the maximum ele-
ment in the workload array, and is the bot-
tleneck value of perfectly load balanced partition. In row-
wise striping, corresponds to the total number of
nonzeros in the sparse matrix, and is the number of
nonzeros in the most dense row. Note that in
most sparse matrices arising in various fields. Second, the
-approximation restriction does not apply since the work-
load array is composed of integers.
The generic bisection algorithm is illustrated in Fig. 2.

The workload array is such that is equal to the num-
ber of nonzeros in the th row of the matrix, i.e.,
. Prefix-sum on the task array enables the constant-

time computation of the weight of the

BISECT1D PROBE
; ; ;

Prefix sum on ; while and do
; ;
; ;

; ;
repeat if then

; return FALSE ;
if PROBE then else

; return TRUE;
else

;
until ;
return ;

Figure 2: Bisection algorithm for 1D -way rowwise strip-
ing.

row-stripe through .
Integer weights in the task array restrict the optimal bottle-
neck value to UB distinct integer values
within the range UB. Hence, binary search
can be efficiently used to find through probes in the
interval UB .
Given a bottleneck value , PROBE tries to

find a -way partition of with a bottleneck value no
greater than . PROBE finds the largest index so that

, and assigns the row-stripe to
processor 1. Hence, the first row in the second proces-
sor is . Probe then similarly finds the largest in-
dex so that , and assigns the row-stripe

to processor 2. This process contin-
ues until either all rows are assigned or the processors are
exhausted. The former case denotes the existence of a par-
tition with bottleneck value no greater than , whereas the
latter shows the inexistence of a partition with bottleneck
value smaller than or equal to [19]. As seen in Fig 2, the
indices are efficiently found through binary
search (BINSRCH) on the prefix-summed array . Note
that an optimal solution can easily be constructed by mak-
ing a last PROBE call with .
The complexity of one PROBE call is .

The bisection algorithm makes PROBE calls.
Thus, the overall complexity of the algorithm is

together with the initial -time
prefix-sum operation. The algorithm is surprisingly fast, so
that the initial prefix-sum operation dominates the overall
execution time. Fortunately, the data structure for the RCS
scheme is efficiently exploited to avoid the initial prefix-
sum operation without any additional operations, thus re-
ducing the complexity to .
In this work, we further exploit the nice bounds on opti-

mal bottleneck value to restrict the search space for sep-
arator values during BINSRCH in PROBE calls. That is,
for each processor , ,
where and correspond to the smallest and largest
indices such that and



for ; and ;
Perform prefix sum on with ;

;
; ;

while do
repeat
if then

;
else
while do

;
;

if BIDS then
;

else
;

until or ;
if then

;
else

BIDS ;
;

return ;

Figure 3: Bidding algorithm for 1D -way rowwise strip-
ing.

, respectively. This
scheme reduces the complexity of an individual probe call
to , where
denotes the average number of nonzeros per row. This
reduces the overall complexity to

), together with the ini-
tial cost of for setting the and values.
In this work, we propose a novel algorithm which also

works for real-valued workload arrays. This new algorithm,
namely the BIDDING algorithm, is presented in Fig. 3.
In this algorithm, we dynamically increase the bottleneck
value , starting from the perfect bottleneck value , until
a feasible partition is obtained. This leads to an incremental
probing scheme, where the decision is given by modifying
the separators from the previous probe call. The separator
indices are set as the largest indices such
that with for .
As in the conventional probing scheme,
denotes the infeasibility of the current value. After de-
tecting an infeasible value, the important issue is to de-
termine the next larger value to be investigated. Un-
doubtfully, at least one of the separators should move to
the right for a feasible partition. So, the next larger
value is computed by selecting the minimum of the set of

values. We call the
value the bid of processor , which refers

to the load of processor if the first row of the
next processor is added to processor. Note that the bid of
the last processor is equal to the load of the remain-
ing rows. If the best bid comes from part , probing
with new is performed only for the remaining processors
( ). In this scheme, we prefer to determine

the new positions of the separators by moving them to the
right one by one, since their new positions are likely to be
in a close neighborhood of their previous values. Note that
binary search is used only for setting the separator indices
for the first time. As seen in Fig. 3, we maintain prefix-
minimumarray BIDS for computing the next larger value
in constant time. Here, BIDS is an array of records of
length , where BIDS and BIDS store the best
bid value of the first processors and the corresponding
processor, respectively. BIDS is used to enable the run-
ning prefix-minimum operation.
After the separator index is set for processor , the

repeat-until-loop terminates if it is not possible to parti-
tion the remaining segment into proces-
sors without exceeding the current value, i.e.,

. In this case, the next larger
value is determined by considering the best bid among

the first processors and rbid . Here, rbid represents the
bottleneck value of the perfect -way partitioning
of the remaining segment . Note that this variable
also stores the bid of the last processor, when all separator
indices are assigned nonzero values.
3.2 Two-Dimensional Jagged Partitioning
In this section, we consider optimal ( )-way row-

wise jagged partitioning of an sparse matrix. Bi-
section method can be extended to 2D jagged partitioning
by setting tight bounds on the value of the optimal bot-
tleneck value and defining an appropriate 2D probe func-
tion. We compute the bounds by constructing a condition-
ally optimal jagged partition as follows. We first construct
an optimal 1D -way rowwise striping of the given ma-
trix. Then, we construct a jagged partition by construct-
ing optimal 1D columnwise striping of every row stripe
found in the first phase. The upper bound UB is set to the
bottleneck value of this conditionally optimal jagged par-
tition. The lower bound is computed by dividing the
bottleneck value of the optimal rowwise striping by . The
bounds on and UB can be derived as and
UB , respectively. Hence,
the search range for binary search will always be less than

distinct integers. Here, and
denote the number of nonzeros in the most dense

row and column, respectively.
In this work, we propose a 2D probe algorithm. Given

a bottleneck value , PROBE2D tries to find a -
way jagged partition of matrix with a bottleneck value
no greater than . PROBE2D finds the largest row index

so that there exists a -way columnwise striping of the
the row-stripe (submatrix) with a bottleneck value no
greater than . PROBE2D then similarly finds the largest
row index so that there exists a -way columnwise strip-
ing of the next row-stripe with a bottleneck value
no greater than . This process continues until either all
rows are consumed, or row-stripes are obtained. The for-



BISECT2D PROBE2D
repeat for to do

; ; ;
if PROBE2D then ; ;

; while do
else ;

; construct ;
until ; if PROBE1D then
return ; ; ;

else
PROBE1D ;

; construct ;
for to do if PROBE1D then

; for to do
while and do

; return TRUE;
if and then else
return TRUE; for to do

else ;
return FALSE; return FALSE;

Figure 4: Bisection algorithm for 2D -way jagged partitioning

mer case denotes the existence of a jagged partition with
bottleneck value no greater than , whereas the latter shows
the inexistence of a partition with bottleneck value smaller
than or equal to . In a similar way to our BISECT1D al-
gorithm, we further exploit the nice upper bound on optimal
bottleneck value to restrict the search space for separator
values during the binary search in PROBE2D calls. That is,
for each processor , ,
where and correspond to the smallest and largest
row indices such that UB and

UB , respectively.
As seen in Fig. 4, rl and rh variables define the space

to be explored for finding values. The while-loop in-
side the for-loop implements the binary search for finding

in this space for the first row-stripes. Here, vari-
able denotes the starting row index of the current row
stripe . At each binary search step , 1D workload array

is constructed for investigating the feasibility of a
-way columnwise striping of the submatrix with a

bottleneck value no greater than . We favor a different 1D
probing scheme (PROBE1D) which does not adopt prefix-
sum, since the same row-stripe is not likely to be explored
multiple times for -way 1D probing. The last if-then-else
statement in the outer for-loop, determines the feasibility
of the current value by probing on the workload array
of the remaining submatrix . This if-then-else
statement also involves an efficient scheme proposed for dy-
namically reducing the size of the search space for the
values in 2D probes. That is, whenever a bottleneck value
succeeds, current values provide new tighter upper

bounds for the following binary search steps. Similarly, for
an unsuccessful value, current values provide new
tighter lower bounds for the following binary search steps.
1D bidding algorithm presented in Section 3.1 is also ex-

tended to 2D jagged partitioning. The critical point in this
algorithm is how to compute the next larger value. In 2D

Table 1: Properties of sparse test matrices.
number number of non-zeros ex. time

name of total per row/column SpMxV
row/col avg min max msecs

pilot87 2030 238624 117.55 1 738 43.90
cre-b 9648 398806 41.34 1 904 77.80
cre-d 8926 372266 41.71 1 845 72.20
ken-11 14694 82454 5.61 2 243 19.65
ken-18 105127 609271 5.80 2 649 167.40
CO9 10789 249205 23.10 1 707 51.45
CQ9 9278 221590 23.88 1 702 45.90
NL 7039 105089 14.93 1 361 22.55
mod2 34774 604910 17.40 1 941 124.05
world 34506 582064 16.87 1 972 119.45

bidding algorithm, row-stripes bid for the next value.
The bid of each row-stripe is determined by the optimal bot-
tleneck value of columnwise striping of the submatrix com-
posed of the current rows of the stripe and the first row of
the next stripe. Due to lack of space, we cannot present the
details here.

4 Experimental Results
We have experimented the performance of the pro-

posed load balancing algorithms for the rowwise striped
and jagged partitioning of various test matrices arising in
linear programming domain. Table 1 illustrates the prop-
erties of the test matrices. These test matrices are ob-
tained from Netlib suite [7], and IOWA Optimization Cen-
ter (ftp://col.biz.uiowa.edu:pub/testprob/lp/gondzio/). The
sparsity pattern of these matrices are obtained by multiply-
ing the respective rectangular constraint matrices with their
tranposes. Table 1 also displays the execution time of a sin-
gle SpMxV operation for each test matrix.
All algorithms are implemented in C language. All ex-

periments are carried out on a workstation equipped with a
133MHzPowerPC with 512-KB external cache, and 64MB
ofmemory. We have experimented 16, 32, 64, 128, 256way
row-striping and 4 4, 4 8, 8 8, 8 16, 16 16way jagged



partitioning of every test matrix.
Table 2 illustrates relative performance results of various

load balancing algorithms. In this table, RD refers to the
recursive decomposition heuristic mentioned in Section 1.
Recall that RD is equalivalent to MRD scheme mentioned
earlier in Section 1. RD scheme is implemented as effi-
ciently as possible by adopting binary search on 1D prefix-
summed workload arrays. DP and Nic. refer to the dynamic
programming and probe-based 1D decomposition schemes,
implemented with respect to guidelines provided in [6, 20]
and [19], respectively. Bsct and Bid stand for the proposed
bisection and bidding algorithms described in Section 3.
In Table 2, percent load imbalance values are computed

as , where denotes the number of
nonzeros in the most heavily loaded processor (part, sub-
matrix), and denotes the number of nonzeros in
every processor under perfectly balanced partitioning. OPT
denotes the percent load imbalance obtained by the opti-
mal partitioning algorithms. The table clearly shows that
considerably better decompositions can be obtained by us-
ing optimal load balancing algorithms instead of heuristics.
The quality gap between the solutions of optimal algorithms
and heuristics increases with decreasing granularity, as ex-
pected. As also expected, 2D jagged partitioning always
produces better decompositions than 1D striping. This qual-
ity gap becomes considerably large for larger number of
processors.
Table 2 displays the execution times of various decom-

position algorithms normalized with respect to a single Sp-
MxV time. Note that normalized execution times of 1D
decomposition algorithms are multiplied by 100 because of
the difficulty of displaying extremely low execution times
of the proposed bisection (Bsct), and bidding (Bid) algo-
rithms. DP approaches are not recommended for sparse ma-
trix decomposition because of their considerably large exe-
cution times relative to those of the proposed algorithms. In
1D decompostion of sparse matrices, both of our algorithms
are definitely faster than Nicol’s algorithm, the best known
chains-on-chains partitioning algorithm. Although our al-
gorithms are slower than RD heuristic, their additional pro-
cessing time should be justified because of their consider-
ably better decompositon quality and extremely low execu-
tion times compared to a single SpMxV computation time.
The execution times for 2D partitioning algorithms are

relatively high compared to 1D partitioning, however the
quality of the partitions and the execution times of the ini-
tial implementations encourage further research for faster
algorithms and implementations.

5 Conclusion and Future Research
Efficient optimal load balancing algorithms were pro-

posed for 1D striped and 2D jagged partitioning of sparse
matrices. Experimental results on a large set of test matrices
verified that considerably better decompositions can be ob-
tained by using optimal load balancing algorithms instead

of heuristics. The proposed algorithms were found to be or-
ders of magnitudes faster than a single matrix-vector mul-
tiplication in 1D decomposition. The proposed algorithms
for 2D partitioning are slightly slower than a matrix-vector
multiplication, while producing significiantly better decom-
positions than the heuristics. We are currently working on
improving the speed performance of our 2D load balancing
algorithms.
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Table 2: Relative performance results of various load balancing algorithms.
1D Decompostion (rowwise striping) 2D Decomposition (rowwise jagged)

percent load 100 execution time percent load execution time
name K imbalance normalized wrt SpMxV K imbalance norm. wrt SpMxV

OPT RD RD DP Nic. Bsct Bid PxQ OPT RD RD Bid Bsct
16 1.15 1.15 0.05 12 4 0.34 0.06 4x4 0.46 0.52 0.46 0.54 0.50
32 1.85 4.39 0.07 25 13 0.46 0.23 4x8 0.66 1.02 0.46 0.51 0.48

pilot87 64 2.99 5.89 0.11 50 44 1.03 0.46 8x8 0.98 1.27 0.46 0.64 0.56
128 6.05 12.22 0.25 96 148 1.94 1.20 8x16 1.76 2.78 0.47 0.76 0.67
256 14.26 36.14 0.43 174 495 3.64 4.50 16x16 2.13 4.38 0.48 0.97 0.77
16 0.25 0.84 0.03 33 4 0.64 0.06 4x4 0.10 0.21 0.49 0.67 0.60
32 0.81 3.92 0.05 66 16 0.84 0.13 4x8 0.30 1.23 0.50 1.38 0.69

cre-b 64 1.20 6.12 0.09 135 61 1.61 0.22 8x8 0.49 1.92 0.53 1.58 0.86
128 2.51 17.05 0.18 275 214 2.44 0.80 8x16 0.88 3.22 0.54 2.08 1.18
256 10.02 20.74 0.37 533 671 3.53 1.99 16x16 1.42 5.92 0.61 3.58 1.84
16 0.45 0.53 0.03 32 4 0.55 0.03 4x4 0.14 0.38 0.50 0.62 0.60
32 0.63 3.74 0.06 70 18 0.83 0.10 4x8 0.25 0.61 0.51 0.82 0.62

cre-d 64 1.73 4.34 0.10 137 62 1.52 0.28 8x8 0.64 1.98 0.53 1.16 0.99
128 2.88 16.70 0.19 274 218 2.63 0.80 8x16 1.09 7.00 0.53 1.86 1.16
256 10.85 35.20 0.37 532 677 3.88 1.63 16x16 1.57 6.25 0.60 3.32 2.05
16 0.21 0.98 0.10 227 19 3.56 0.25 4x4 0.07 0.11 0.66 1.83 1.40
32 1.18 3.74 0.15 460 77 4.83 1.91 4x8 0.13 0.13 0.68 2.60 1.50

ken-11 64 1.29 13.17 0.31 930 292 6.62 2.67 8x8 0.36 1.14 0.88 6.11 3.28
128 6.80 13.17 0.76 1859 1011 10.43 20.36 8x16 0.59 1.21 0.96 10.28 2.75
256 7.11 50.89 1.53 3618 3360 16.03 36.01 16x16 1.22 2.46 1.24 27.30 4.99
16 0.17 0.56 0.01 243 5 3.55 0.18 4x4 0.00 0.01 0.80 1.78 1.25
32 0.23 2.26 0.02 499 19 3.76 0.27 4x8 0.08 0.38 0.81 9.55 3.06

ken-18 64 0.89 2.26 0.06 996 73 4.24 1.82 8x8 0.15 0.59 0.99 20.74 4.51
128 0.95 9.08 0.13 1950 269 5.23 2.82 8x16 0.21 1.37 0.99 23.67 3.99
256 4.58 9.08 0.26 3822 980 7.35 27.63 16x16 0.42 1.72 1.36 60.82 8.91
16 0.34 1.37 0.02 63 6 0.97 0.10 4x4 0.36 0.40 0.52 1.31 0.84
32 1.07 4.60 0.06 126 24 1.55 0.39 4x8 0.45 1.48 0.53 1.51 0.86

CO9 64 1.93 4.96 0.12 254 94 2.53 1.21 8x8 1.08 1.62 0.58 3.40 1.40
128 4.73 18.75 0.25 533 328 4.47 3.98 8x16 1.39 6.12 0.59 5.15 1.75
256 13.62 42.58 0.52 1013 1062 5.54 19.44 16x16 1.90 13.20 0.62 9.40 3.96
16 0.58 0.58 0.04 55 7 0.98 0.22 4x4 0.28 0.66 0.50 1.07 0.73
32 0.80 2.24 0.07 118 26 1.42 0.22 4x8 0.48 1.84 0.51 2.00 0.77

CQ9 64 1.43 7.64 0.13 233 95 2.40 0.87 8x8 0.86 1.84 0.56 2.39 1.13
128 3.51 22.34 0.33 485 336 3.70 3.05 8x16 1.38 4.44 0.57 4.11 1.81
256 14.72 58.62 0.59 908 1104 6.54 17.65 16x16 2.36 13.00 0.66 8.68 3.44
16 0.35 1.20 0.04 89 12 2.00 0.22 4x4 0.26 0.49 0.55 1.51 0.93
32 0.85 3.44 0.13 173 44 2.44 0.55 4x8 0.46 1.89 0.55 1.88 0.89

NL 64 2.37 5.60 0.31 393 167 4.21 2.11 8x8 0.79 2.86 0.61 3.48 1.71
128 4.99 22.78 0.58 717 597 5.99 5.21 8x16 1.34 5.84 0.63 4.41 1.86
256 14.25 60.78 1.15 1419 1714 11.31 23.61 16x16 1.83 5.48 0.75 10.13 4.52
16 0.03 0.06 0.02 92 5 1.41 0.02 4x4 0.05 0.11 0.63 1.80 1.21
32 0.07 0.19 0.04 185 20 1.65 0.08 4x8 0.09 0.13 0.64 2.12 1.06

mod2 64 0.18 2.18 0.08 374 73 2.14 0.24 8x8 0.11 0.20 0.64 3.57 1.59
128 0.41 2.46 0.18 746 275 3.35 0.58 8x16 0.28 1.84 0.65 5.20 2.14
256 1.23 18.92 0.34 1500 959 5.24 3.69 16x16 0.43 2.92 0.80 14.05 4.09
16 0.04 0.09 0.02 92 5 1.34 0.04 4x4 0.05 0.06 0.56 1.90 1.00
32 0.08 0.27 0.03 192 20 1.72 0.08 4x8 0.10 0.38 0.57 2.20 1.09

world 64 0.28 4.73 0.09 376 78 2.26 0.36 8x8 0.17 0.52 0.66 3.65 1.64
128 0.76 6.37 0.18 762 282 3.43 1.78 8x16 0.26 1.29 0.66 4.02 2.06
256 1.11 27.41 0.36 1468 1023 5.40 2.89 16x16 0.50 3.36 0.80 12.39 4.86


